A production Chemical Mechanical Planarization (CMP) tool in a research environment

Nils Nordell
Laboratory Director and SSF Research Infrastructure Fellow
Electrum Laboratory

• Since 1987
• Operated by KTH and RISE
• Part of Myfab
• 1 300 m² cleanroom ISO 5-6
• 1 500 m² other labs
• About 250 Users
• Yearly turnaround 5.5 MEuro
• Open access policy
• 50/50 academic/commercial
• Education, research, development and small scale production
• Process lines: Si (MEMS and CMOS); SiC; InP and GaAs
• ISO 9001 and ISO 14001 certified management and environmental system
CMP Process Motivation

• Polishing removing surface roughness

• Planarization enabling multi layer structures

• Technologies:
 • Monolithic integration: materials and devices
 • Wafer bonding
 • Dielectric layer planarization
 • Metal interconnection
 • Epitaxial regrowth
 • Layer polishing

CMP Process Motivation
- Enabling 3D integration

• Planarization enables integration:
 • Heterogeneous 3D integration
 • Close packing and extreme miniaturization
 • Complex systems

• Applications
 • CMOS
 • Power Electronics
 • Optoelectronics
 • MEMS & System-on-chip
CMP Process - basics

- Platen with polishing pad:
 - Polyurethane based
 - Hardness, density, structure

- Slurry
 - Chemical action
 - Mechanical grinding (particle size ~ 20 - 100 nm)

- Wafer carrier
 - Down force (up to 340 kg)
 - Pressure distribution for uniformity

- Pad conditioner:
 - Diamond coated disc
 - Revitalization of the polishing pad
 - Pad longevity and process reproducibility

Preston formula for CMP removal rate (RR):

- $RR \propto P, v$
 - P – polishing pressure
 - v – relative velocity between pad and wafer

CMP Tool: IPEC 472

• Specification: flexibility & high performance
 • 2 polishing tables: primary and buffing
 • Removable table tops for fast process switching
 • 2 slurry lines per table
 • Wafer diameters: 50, 75, 100, 150, (and 200) mm
 • Cassette-to-cassette handling for 100 and 150 mm
 • Temperature control of polishing platens
 • State of the art uniformity with Titan™ wafer carrier
 • Materials: Si/SiGe; SiO₂; SiC; InP; GaAs

• Peripherals:
 • External 110 l slurry tank with stirring
 • Wet cabinet for pad storage
 • Megasonic bath for post CMP cleaning
 • Water circulation system (retrofit)
CMP tool installation requirements

Dimensions:
• 200 x 170 cm
• Height: 235 cm

Weight:
• 3410 kg

Media:
• DI water: 20 l/min
• CDA: 170 SLM
• Exhaust: 600 m³/hr
Titan™ Wafer carrier
For state-of-the-art uniformity

- Wafer sizes
 - Separate heads for 100 & 150 mm (200 mm available)
 - Insert ring in the 150 mm head for 50 and 75 mm

- 3 pressure zones for uniformity:
 - RR - Retainer Ring
 - IT - Inner Tube
 - MM – Membrane pressure
 - Vacuum for wafer loading

Process control PECVD SiO₂ process
In a multi-user environment

- Polishing rate over months
- Surface roughness
- Wafer to wafer non-uniformity
- Within wafer non-uniformity

<table>
<thead>
<tr>
<th>RR</th>
<th>WIWNU</th>
<th>WTWNU</th>
<th>Rs</th>
</tr>
</thead>
<tbody>
<tr>
<td>510 nm/min</td>
<td>3 %</td>
<td>2 %</td>
<td>0.7 nm</td>
</tr>
<tr>
<td>230 nm/min</td>
<td>2 %</td>
<td>1 %</td>
<td>0.8 nm</td>
</tr>
<tr>
<td>80 nm/min</td>
<td>5 %</td>
<td>5 %</td>
<td>0.3 nm</td>
</tr>
</tbody>
</table>

Statistical Process Control

st. dev. ≈ 18 %
Wafer handling and Process
Wet handling

- Post CMP wet handling of wafers
 - Wet receiver cassette
 - Wet transfer boxes to post CMP cleaning

- Post CMP cleaning procedure:
 - DI water in megasonic bath
 - Standard Clean 1 & 2
 - Rinse-Dryer

- Wet handling of pads
 - Wet storage cabinet
 - Platen DI-water flushed

Total DI-water consumption:
- Up to 20 l/min at process
- 3 l/min at stand-by
- Saving goal: 1 l/min
Example 1: CMP a key enabler for monolithic 3D integration

- Multi layer transistor circuits
 - 1st tier: Si based transistors
 - 2nd tier: Ge based transistors

- Complex fabrication process by epitaxial growth and wafer bonding, enabled by CMP.
Ex 1: Transfer of SiGe layer on patterned substrate

(a) SiO₂ (400 nm)
(b) CMP removed ~ 1 µm
(c) Strain relaxed SiGe ~ 3 µm
(d) After removal of Si substrate and Ge buffer layer

Strain relaxed SiGe ~ 3µm
Ex 1a: Reduce roughness of SiGe strain relaxed buffer

Epitaxial SiGe layer before CMP step
Spikes is ten’s of nm

after CMP step
RMS surface roughness ≈ 0.9 nm

SiO$_2$ 250 nm
PECVD

Si$_{0.5}$Ge$_{0.5}$ < 20 nm
Epitaxy

Strain relaxed SiGe ~ 3μm
Si wafer
Ex 1b: Reduce roughness of PECVD SiO₂

As deposited
AFM roughness = 3.7 nm

Post CMP
Roughness = 0.8 nm

Height of the slurry particles:
40-100 nm

Post CMP: H₂O megasonic clean for 30 min
Ex 1c: Planarization of PECVD SiO$_2$ on metals

Before planarization

600 nm removal

1200 nm removal

Step height ~ 670 nm

Step height ~ 70 nm

Step height ~ 3 nm
Example 2: Planarization of GaAs epitaxy on Si Substrate

BEFORE CMP

Rq(20\(\mu\)m) = 85 nm

AFTER 360 nm

Rq(20\(\mu\)m) = 3.1 nm
Rq(4\(\mu\)m) = 0.8 nm

\[RR = 14\pm2 \text{ nm/min} \]
Example 3: Process for full 3DSiC© structure

3DSiC© structures for buried grid high blocking voltage applications

Two step process

1. Primary slurry
 - High removal rate: 7 µm/h (Si face)
2. Final slurry
 - Removal rate: 1 µm/h (Si face)
 - Low surface roughness: 0.5 nm \(R_{\text{rms}} \)

Courtesy to Ascatron AB

Part of myfab

2019-06-17
Example 4: Planarization of thick SiC epitaxial layer surface

For >30 µm thick SiC epilayers surface degrades due to step-bunching and defects

Typical surface after 260 µm n-epi

Nomarski microscope image
AFM

Surface after CMP

Rms = 138nm
Rms = 0.5nm

Courtesy to Ascatron AB
Acknowledgements

Participating Researchers:
• Per-Erik Hellström
• Corrado C.M. Capriata
• Mattias Ekström
• Yanting Sun
• Sergey Reshanov
• Linus Vik
• Axel Strömberg
• Frank Niklaus
• Raul Molines
• Zhehan Xu

Funded by
Swedish Foundation for Strategic Research
Program: Research Infrastructure Fellow
Project: RIF 14-0017
Thanks for your attention!